Math 333 (2004) Assignment 6

(Due: November 9, 2004 in class) Maximum 60 points

1. (15) In each of the following an inner product space V with its associated inner product are defined. For the indicated vectors $u, v \in V$ compute $\langle u, v \rangle$ and $\parallel u \parallel$.

a)

$$V = \mathbb{R}^3 , < u, v > \equiv (Au)^T (Av) , A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

$$u = (1, 1, 1) , v = (2, 0, 1)$$

b)

$$\begin{array}{rcl} V & = & C[0,1] & , & < u,v> \equiv \int_0^1 u(x)v(x)dx & , \\ u & = & x-1 & , & v=x+1 \end{array}$$

c)

$$V = M_{22} , \langle u, v \rangle \equiv Tr(u^T v) ,$$

$$u = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} , v = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}$$

- **2.** (5) If V=C[0,1] and $< u,v>\equiv \int_0^1 u(x)v(x)dx$, find all α (if any) for which $u=\alpha-3x$ and $v=\alpha x+1$ are orthogonal.
- **3.** (5) Consider the following subspace W of $V = M_{22}$:

$$W = \{u \in M_{22} : u^T = u\}$$

Elements of u are symmetric matrices which always have real eigenvalues. For any $u \in W$ we let λ_1 and λ_2 be the eigenvalues of u. Likewise μ_1 and μ_2 are the eigenvalues of v. Now define

$$\langle u, v \rangle \equiv \lambda_1 \mu_1 + \lambda_2 \mu_2$$

Is this an inner product on W? Specifically which of the five axioms defining an inner product are satisfied and which (if any) are not?

4. (5) Let $V = P_2$ and define

$$< u, v > = u(0)v(0) + u\left(\frac{1}{2}\right)v\left(\frac{1}{2}\right) + u(1)v(1)$$

Is this an inner product on V? To be clear if $u = ax^2 + bx + c$ then u(0) = c, u(1) = a + b + c, etc.

5. (10) Let $E = \{e_1, e_2, \dots e_n\}$ be an orthonormal basis for an inner product space V. Prove that if $(u)_E = (u_1, u_2, \dots u_n)$ and $(v)_E = (v_1, v_2, \dots v_n)$ then

$$||u|| = \sqrt{u_1^2 + u_2^2 + \cdots + u_n^2}$$

and

$$\langle u, v \rangle = u_1 v_1 + \cdots + u_n v_n$$

This essentially shows how any inner product can be reduced to the dot product on \mathbb{R}^n .

6. (10) For each of the following find a basis for W^{\perp} .

a)

$$W = span\{x^2 - 1, x\} \subset P_2$$
 , $\langle u, v \rangle = \int_0^1 u(x)v(x)dx$

b)

$$W = span\{(1, 2, 1, 2)^T, (0, 1, 1, 1)^T\} \subset \mathbb{R}^4 \quad , \quad < u, v >= u^T v$$

7. (10) Recall from class the Fredholm alternative Theorem:

Theorem 1 Let $A \in \mathbb{R}^{n \times n}$. Then, Ax = b has a solution $\Leftrightarrow \langle v, b \rangle = 0$, $\forall v \in N(A^T)$.

a) Use this theorem to determine for what $\alpha \in \mathbb{R}$ (if any) the following system has a solution:

$$x_1 + 2x_2 - x_3 = \alpha$$

 $3x_1 + x_3 = 1 - \alpha$
 $x_1 - x_2 + x_3 = 2 + 3\alpha$

b) Suppose $b_0 \in col(A)$, $b_1 \in N(A^T)$ and $b_1 \neq 0$ What must $\alpha \in \mathbb{R}$ equal for $Ax = \alpha b_1 + b_0$ to have a solution?