1. [30] For each of the linear transformations T defined below, determine the standard matrix [T] associated with it.

(a)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(\mathbf{x}) \equiv (2x_3 - x_1, x_1 + 5x_2)$ where $\mathbf{x} = (x_1, x_2, x_3)$.

$$[T] =$$

(b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where $T(\mathbf{x})$ is the projection of \mathbf{x} onto $\mathbf{u} = (3, -1)$.

$$[T] =$$

(c) $T: \mathbb{R}^3 \to \mathbb{R}^3$ where if \mathbf{e}_1 , \mathbf{e}_2 and \mathbf{e}_3 are the standard basis vectors and

$$T(\mathbf{e}_1 - \mathbf{e}_3) = (2, 1, 2) , T(\mathbf{e}_1 + \mathbf{e}_3) = (0, 1, 2) , T(\mathbf{e}_2) = (3, 1, 2) .$$

$$[T] =$$

2. [20] Indicate which of the following sets W are subspaces of the indicated vector spaces V. If W is not a subspace, state all closure properties which are not satisfied and illustrate their failure with a specific example.

a)
$$V = \mathbb{R}^3$$
, $W = \{x \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1\}$ where $x = (x_1, x_2, x_3)$.

b)
$$V=P_2$$
 , $W=\{u\in P_2: u(2)=0\}$ where $u(x)=ax^2+bx+c$ for scalars a,b,c .

c)
$$V = M_{22}$$
, $W = \{A \in M_{22} : Tr(A) = a_{11} + a_{22} = 0\}$ where $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$.

d)
$$V = P_2$$
, $W = \{u \in P_2 : u(x) = ax^2 + bx + c, a > 0\}$.

3. [10] Compute a basis S for the solution space of the following system of equations:

$$x_1 + x_2 + x_3 + x_4 = 0 (1)$$

$$2x_1 - x_2 + 2x_3 - x_4 = 0. (2)$$

S =

4. [10] Let w=(1,1), $v_1=(2,1)$ and $v_2=(-1,3)$ be vectors in \mathbb{R}^2 . Write w as a linear combination of v_1 and v_2 , that is, find scalars a,b such that

$$w = av_1 + bv_2$$

5. [10] Let $V=P_2$ and $w=12x\in V$. Compute the coordinate $(w)_S=(c_1,c_2,c_3)$ of w relative to $S=\{v_1,v_2,v_3\}$ where

$$v_1 = 2x^2 + x - 1$$
 , $v_2 = x^2 + 2x + 1$, $v_3 = -x^2 + 3x$.

- **6.** [20] Indicate whether the following statements are True (T) or False (F). When the statement is False, give a simple counterexample.
- a) Let $u, v, w \in \mathbb{R}^3$. If u is orthogonal to v and w then u is orthogonal to 2v w.

b) Two independent vectors $x, y \in \mathbb{R}^3$ span every two dimensional subspace W of \mathbb{R}^3 .

c) Let V be a vector space with dim(V)=3 and $S=\{u_1,u_2,u_3,u_4\}\subset V$ where u_1,u_2,u_3 are independent. Then V=span(S).

d) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation then dim(N(A)) = 0 where A = [T].