Math 450 (2017) – Homework 4

Due: Thur, November 9, 2017. Turn it in during class Wed 11/8 or slide under my door (Wil 2-236) before noon on Thur, 11/9

1. [10 pts] Let $y(t, \epsilon)$ be the solution of the initial value problem

$$y'' + y = \epsilon y(y')^2$$
, $0 < \epsilon \ll 1$
 $y(0) = 0$, $y'(0) = 1$

where ()' denotes differentiation with respect to t. Assume

$$y(t,\epsilon) = y_0(\tau) + \epsilon y_1(\tau) + O(\epsilon^2)$$

$$\tau = \omega(\epsilon) \equiv 1 + \omega_1 \epsilon + O(\epsilon^2)$$

where $y_k(\tau)$ are 2π -periodic in τ for appropriate choices of ω_k for $k \ge 1$. Use Poincare Lindstedt's method to find $y_0(\tau)$ and the corrected period of the oscillation, i.e., T_0 and T_1 in the exact period (in the original time t):

$$T(\epsilon) = T_0 + \epsilon T_1 + O(\epsilon^2)$$

You will need to look up appropriate trigonometric identities to complete the problem. **2.** [9 pts] <u>Prove</u> that as $\epsilon \to 0^+$ the following are true:

$$e^{-1/\epsilon} \ll \epsilon^n , \quad \forall n > 0$$

$$\int_0^{\epsilon} f(x) \, dx = O(\epsilon)$$

$$\log(\epsilon) \ll \frac{1}{1 - \cos(\epsilon)}$$

For the first, consider the log of the ratio $e^{-1/\epsilon}/\epsilon^n$ to make the conclusion. The second can be proved using the Fundamental Theorem of Calculus or L'Hospital's rule and the third can be shown using L'Hospital's rule (though there is a simpler way).

3. [6pts] An asymptotic sequence $\{\phi_n(\epsilon)\}$ is defined by $\phi_n(\epsilon) = \sin^n \epsilon$ for $n \ge 0$ noting $\phi_0 = 1$. Find constants a_0, a_1, a_2 and a_3 such that

$$f(\epsilon) \equiv \sqrt{1 - 4\epsilon} \sim a_0 \phi_0(\epsilon) + a_1 \phi_1(\epsilon) + a_2 \phi_2(\epsilon) + a_3 \phi_3(\epsilon) + O(\phi_4) \quad as \quad \epsilon \to 0$$

Hint: expand both sides in powers of ϵ , i.e. $\sin \epsilon = \epsilon - \frac{1}{3!}\epsilon^3 + \cdots$, the same for $\sqrt{1 - 4\epsilon}$, $\sin^2 \epsilon$ and equate coefficients in ϵ^n on both sides.

NAME: _____

4. [10 pts] Consider the equation

$$f(x,\epsilon) = \epsilon x^2 - \sqrt{x} + 1 = 0$$

Using calculus one can <u>prove</u> that there are exactly two positive roots to the above equation. If you plot ϵx^2 and $\sqrt{x} - 1$ you can quickly see that for ϵ small, one root is O(1) and the other is singular in ϵ .

a) Compute x_0, x_1 in the regular expansion

$$\bar{x}_{-}(\epsilon) = x_0 + x_1\epsilon + O(\epsilon^2)$$

b) For the singular root, determine X_0, X_1 and α in the expansion

$$\bar{x}_{+}(\epsilon) = \frac{1}{\epsilon^{\alpha}} \left(X_{0} + \delta X_{1} + O(\delta^{2}) \right) \quad , \quad \alpha > 0$$

for an appropriate function $\delta(\epsilon) \ll 1$.

5. [10 pts] Find the leading inner and outer solutions $y_0(x)$ and $Y_0(X)$ of the boundary value problem

$$\epsilon y'' + y' + y^2 = 0 , \quad x \in (0,1)$$
$$y(0) = \frac{1}{4} ,$$
$$y(1) = \frac{1}{2} ,$$

and then a uniformly valid approximation $y_u(x, \epsilon)$.