\qquad

1. [5 pts] A bacteria population has density $u(x, t)$ and is both chemotactic and thermotactic. Thus the fluxes are

$$
\begin{aligned}
\mathbf{J}_{\text {chemo }} & =+\alpha u \nabla c \\
\mathbf{J}_{\text {thermo }} & =+\beta u \nabla T
\end{aligned}
$$

where c is the concentration of glucose (food), T is the temperature in the growth medium and α, β are constants. The growth term (source) for the bacteria is $f(u, c)$ for some function f. As a consequence the corresponding loss term for c is $-\lambda f(u, c)$ where λ is yield coefficient. Lastly, c and T have only simple diffusive fluxes.

Write down the (three coupled) partial differential equations for the cases $x \in \mathbb{R}^{2}$ and $x \in \mathbb{R}$.
2. [5 pts] A random walk with density $u(x, t)$ is defined by

$$
u(x, t+\Delta t)=T(\Delta x)=p_{-1} u(x-\Delta x, t)+p_{0} u(x, t)+p_{1} u(x+\Delta x)
$$

where p_{k} are all the transition probabilities for the walk hence

$$
p_{-1}+p_{0}+p_{1}=1
$$

By Taylor expanding $T(\Delta x)$ in Δx, show that if the walk is biased $\left(p_{-1} \neq p_{1}\right)$

$$
\frac{u(x, t+\Delta t)-u(x, t)}{\Delta t}=D_{1} u_{x}+D_{2} u_{x x}+O\left(\frac{\Delta x^{3}}{\Delta t}\right) \quad, \quad D_{1} \neq 0
$$

State what D_{1}, D_{2} are. In the limit $\Delta x, \Delta t \rightarrow 0$ with $\Delta x / \Delta t$ fixed and dropping higher order terms we get the advection-diffusion equation for $u(x, t)$:

$$
u_{t}=D_{1} u_{x}+D_{2} u_{x x}
$$

3. [10 pts] Define the 2-D Laplacian operator

$$
L u=\nabla^{2} u \quad, \quad u \in D
$$

where D is the set of all functions defined (and sufficiently smooth) on the unit square $R=[0,1]^{2}$ and satisfying the boundary conditions

$$
u_{x}(0, y)=u_{x}(1, y)=0 \quad, \quad u(x, 0)=u(x, 1)=0
$$

These are Neumann boundary conditions at the left and right $(x=0,1)$ boundaries and Dirichlet at the lower and upper boundaries.
a) Find all the eigenfunctions and eigenvalues of L :

$$
L \phi_{m n}=\lambda_{m n} \phi_{m n}
$$

where m and n are integers. What is the range for the indices m and n in your typical Fourier expansion

$$
f(x, y)=\sum_{m=?} \sum_{n=?} f_{m n} \phi_{m n}(x, y)
$$

b) Write out the general (Fourier) solution of

$$
\nabla^{2} u=f(x, y) \quad, \quad u \in D
$$

c) (Bonus: 1 point) By rearranging terms and order in your solution above, find the Green's function $g\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ such that

$$
u(\mathbf{x})=\iint_{\mathbf{R}} \mathbf{g}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \mathbf{f}\left(\mathbf{x}^{\prime}\right) \mathbf{d} \mathbf{x}^{\prime}
$$

Here $\mathbf{x}=(x, y)$ and $\mathbf{x}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$

