Math 451 (2018) – Homework 8 (THROUGHOUT USE INTEGRAL TABLES AND ODE SOLVERS AS NEEDED)

Due: Friday, Feb. 23, 2018.

NAME: _____

- **1.** [7 pts] Let $\phi_0(x) = 1, \phi_1(x) = \frac{1}{2} x$. It is easily verified $\langle \phi_0, \phi_1 \rangle = 0$ in $L^2[0, 1]$.
 - a) Find constants a, b so that $\phi_2(x) = 6x^2 + ax + b$ is orthogonal to both ϕ_0 and ϕ_1 :

$$<\phi_0,\phi_2> = 0$$

 $<\phi_1,\phi_2> = 0$

b) Use the orthogonality properties of ϕ_k to find the Fourier coefficients c_k in the expansion

$$f(x) = x^{2} + x + 3 = \sum_{k=0}^{k=2} c_{k} \phi_{k}(x)$$

2. [3 pts] Let a = y - x, b = z - y, c = z - x where x, y, z are elements of any normed inner product space. If $\|\cdot\|$ is the inner product induced norm, i.e., $\|a\|^2 = \langle a, a \rangle$, prove

$$|| c ||^2 = || a ||^2 + || b ||^2$$

is true if $a \perp b$, i.e., $\langle a, b \rangle = 0$. This is Pythagorus's theorem.

3. [15 pts] Every function $f(x) \in L^2[0, \pi]$ can be written

$$f(x) = c_0 + \sum_{n=1}^{\infty} c_n \cos(nx) = \sum_{n \ge 0} c_n \cos nx$$

for the orthogonal set $\{\cos nx\}_{n\geq 0}$ and some Fourier coefficients c_n .

- a) Compute c_n for $f(x) = 4\cos 2x + 7\cos 7x$.
- b) Compute c_n for f(x) = x noting $\cos n\pi = (-1)^n$.
- c) Use Parseval's identity and the result in b) to determine a formula for S where

$$S = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^4}$$

4. [20 pts] Below are three regular Sturm-Liouville eigenvalue Problems (SLP)

(I)
$$y'' + \lambda y = 0$$
 $y(0) = 0$ $y'(1) = 0$
(II) $y'' + \lambda y = 0$ $y(0) + y'(0) = 0$ $y(1) = 0$ (1)
(III) $\frac{d}{dx} \left(x^2 \frac{dy}{dx} \right) + \lambda y = 0$ $y(1) = 0$ $y(e) = 0$

Find all eigenvalues λ_n and associated eigenfunctions $y_n(x)$ for each of (I)-(III) above. When possible find an explicit formula for λ_n as in $\lambda_n = n^2$. If you can not find an explicit formula, λ_n will be roots of some function f(z) as in $f(\lambda_n) = 0$. In those cases state what f(z) is.

For each problem consider the cases $\lambda=\mu^2,0,-\mu^2$

For (II) you may want to write the general solution in the form:

$$y(x) = c_1 \sin(\mu(x-1)) + c_2 \cos(\mu(x-1))$$

Also, (III) is a Cauchy-Euler differential equation in x. Take special note of the $\lambda > \frac{1}{4}$ case.