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My research combines analysis, computation, and modeling to understand problems stemming from general pat-

tern forming systems. My thesis work applied dynamical systems techniques to understand localized structures

in reaction-diffusion systems. Most of these patterns can be understood as stationary or traveling wave solutions

to partial differential equations (PDEs). More recently I have focused on social modeling. The patterns in these

models range from traveling waves of cooperation in a spatial game to organized crime networks in a game

coupled with an evolving social network and are best approached with statistical mechanics techniques. This

summer, I also co-directed an REU research project on burglary hotspot modeling.

One of the key approaches I use is spatial dynamics: a spatial coordinate, such

as the radius for radially symmetric solutions, is isolated for treatment as an

evolution variable. Then invariant manifold techniques in conjunction with per-

turbative and global dynamical systems methods can be applied to prove the

existence of solutions and capture their stability properties. In this setting, a

front between a zero rest state and a spatially periodic roll pattern appears as

a heteroclinic connection between an equilibrium to a periodic orbit, a simple

plateau pulse is a homoclinic orbit from the rest state to itself, and a multi-pulse

structure is another homoclinic orbit that makes several rounds in phase space

before returning to the rest state. Fronts and pulses are found by tracking the

stable and unstable manifolds from the appropriate rest states and seeking in-

tersections; these are not local expansions. Once these are found, more direct

approaches are used to glue them together in order to find multi-pulses. With

this in mind, a pulse can actually be seen as a front and back glued together and

similar techniques apply. Spatial dynamics has proven to be a powerful tool in

the study of localized standing and traveling wave solutions.

Gas discharges in [22]

Traveling waves from [18]

Social modeling and adversarial games: My recent research has concentrated on social modeling with an

emphasis on new types of game theoretic models. Specifically, the focus has been on including social mechanisms,

such as peer pressure or a network of personal connections, in an evolutionary adversarial game introduced in

[27] to understand the transition of a disorganized crime dominated society towards peace and cooperation. A

population with players of four possible types (witnessing and non-witnessing criminals, and witnessing and

non-witnessing non-criminals) undergo pairwise interactions that result in one of the players changing strategy.

One of the criminals chooses a victim at random, a crime and possibly a trial occur, and the loser then updates

his strategy. In the original paper [27], the authors were also able to derive a system of ordinary differential

equations (ODEs) that reproduced the game dynamics for a large number of players. Similarly, my first goal

in these extended models is to find a limiting differential equation that I can then study using numerics and

dynamical systems. However, some of the models are more conducive to discrete Monte Carlo simulations and

random graph theory.

The game, as described above, assumes players will only decide on a strategy as a result of a one-on-one criminal

interaction without regard to any neighbor’s strategy. However, peer pressure is well known to influence our

behavior. Using the ODE formulation of the game, a spatial component can be added and the effects of peer

pressure can be included by allowing strategy types to diffuse. In this PDE model, a localized population of

witnessing criminals develops into a traveling pulse that mediates the transition from a criminal state to a

peaceful one with no criminals. A numerical study has been submitted for publication as [18], and a sample

traveling wave can be seen in the above figure. These traveling waves and their selected speed are difficult to

analyze, as the invaded state is degenerately unstable. Usually a linear analysis is sufficient to predict such
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Displayed are the snaking curves and the associated pulse solutions for the 1D Swift–Hohenberg equation.

These curves have been recalculated following [4–6, 8, 32].

traveling waves, but here a fully nonlinear treatment is required because of the degeneracy. I aim to apply

techniques from singular perturbation theory, as recently done in [11], to understand both the wave’s existence

and speed selection rigorously for a reduced two-component model with degenerate traveling waves.

In another variant of the above game, sacred or protected values are introduced as a generating mechanism for

criminal coalitions such as gangs and terrorist networks. Sacred values refers to an ideal that an individual views

as inviolable. In my case, sacred values refers to a fixed network of personal relationships such as kinship or

friendship. Criminals will then choose a victim from outside of their personal network, and those within their

personal network will not witness against them. Coalitions can then be defined as the subsets of the criminals

that are connected through direct connections on these personal networks. The networks themselves are fixed,

but the coalitions can evolve in time. The addition of sacred values in the model stabilizes small amounts of

crime and provides protection for the criminal types against witnessing. More details of this work can be found

in [19].

REU mentoring: In the summer of 2012 jointly with Theodore Kolokolnikov, I advised three undergraduate

students on a crime modeling project. The model was an adaptation of the burglary hotspot model from [28].

In the model from [28], burglars undergo a biased random walk towards attractive burglary cites. Burglaries are

empirically known to be self-exciting: when a house is robbed, it is more likely to be targeted again within a

couple of weeks, as are its neighbors. Though this is well understood, a criminal’s movements are not. Instead

of treating the criminals as random walkers, we modeled their movements with a Lévy flight. This captures the

different modes of transportation a criminal could access such as cars, trains, and walking. Mathematically, this

leads to a nonlocal equation for the burglary hotspots. We were able to derive the nonlocal limiting equation,

numerically solve the agent based system and the nonlocal equation, perform a linear stability analysis to predict

the development of crime hotspots, as well as an inner-outer matching procedure in a singular limit to predict

the hotspot profile. A journal publication has been submitted [7].

Pattern formation: Patterns constantly appear in nature. Localized spots and concentric rings are seen in

desert grasses in the Negev, as burglary hotspots, as oscillons in vertically vibrated trays of sand and clay, and as

standing structures in basins of ferromagnetic fluids in a strong magnetic field. These spots are seen organized
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into hexagon patches in gas discharge experiments, chemical reactions (CIMA), and liquid crystal displays ([16],

[1] and references therein). The Swift–Hohenberg equation,

ut = −(1 + ∆)2u− µu+ νu2 − κu3 + O(u4), x ∈ Rn,

is studied as an archetypical system to understand the formation of these patterns. Originally derived in [29]

to understand the onset of convective rolls from thermal fluctuations in fluid systems, it supports a gallery of

spatially localized solutions. For example, the planar equation supports a plethora of radially symmetric spot

and ring solutions as well as hexagon patches. It also can be seen as the normal form for Turing (or pattern

forming) bifurcations in planar reaction-diffusion systems as was shown in [24]. The figures throughout this re-

search statement illustrate a zoo of experimental patterns, some of which are well modeled by Swift–Hohenberg.

The Swift–Hohenberg equation is interesting both physically and mathematically for dimension n = 1, 2, 3. On

the domain R, it exhibits snaking. This phenomenon is characterized by an infinite number of solutions, in this

case the localized roll patterns, existing for a fixed value of the bifurcation parameter µ. These solutions are all

connected in the bifurcation diagram by a single curve that looks like a snake’s tracks, as is seen in the figure on

page 2. While conditions for snaking and the existence of the accompanying pulse solutions have been studied

extensively, numerous issues related to this equation are wide open for exploration.

Terminated Snaking: By concentrating on radially symmetric

rolls, I used numerical continuation techniques to look at the snaking

curves in 2 and 3D. The study of radially symmetric solutions can

be reduced to a one-dimensional problem, but the dimension still

appears in the radial laplacian. I treated the dimension n as a con-

tinuous parameter to understand the transition away from snaking.

Surprisingly, the snaking appears to terminate for n > 1; these re-

sults are published in [17]. The bifurcation curves are shown to

the right. Above these initial branches are a set of stacked isolas

and a high snaking branch which exhibits defect mediated snaking.

This behavior persists into three dimensions, but the extent of the

snaking branches and stacks of isolas varies. Lloyd and Sandstede

found two one-parameter families of ring solutions and one family

of spot solutions, spot A, in 2D, and rigorously established their

existence at onset in [15]. As a result of the terminated snaking, I

found a second family of spots, referred to as spot B. Because the

dimension was treated in a continuous fashion, I was able to follow

the planar solutions back into one dimension. This revealed that

the spots in 2D went to snaking spots in 1D, whereas the rings be-

came 2-pulses. In bifurcation space, these exist along figure-8 isolas

lying on top of the snaking branches and accompanying ladders.

These isolas combine through a series of saddle-node bifurcations

to become continuous curves in 2D. The spot B family of solutions

behaves differently than the rings or spot A, and a different analysis

from [15] is required to understand their existence.
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snaking!
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Existence: In 2D, Spot B and the rings have numerically been seen to exist only for µ >
√

27/38 while spot A

has been found below this. However, the amplitude of spot B scales differently than the rings or spot A when the
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bifurcation parameter µ is reduced to zero. The amplitude of spot A and the rings varies like
√
µ. In contrast, for

spot B this was numerically seen as µ0.374. The
√
µ scaling is natural for these solutions and it is hard to imagine

where the µ0.374 comes from. In the schematic for stationary solutions of the planar Swift–Hohenberg equation,

three different coordinate charts for the amplitude equations are displayed: the top left is the core, the bottom

left is the transition region which captures algebraic growth and decay, and the far right is the far field which

captures exponential growth and decay. The rings and spot A were found by looking at heteroclinic connections

between the core (where, in this spatial dynamical setting, the core captures solutions that are bounded and

smooth at the origin) and the equilibria in the transition chart and then heteroclinic connections between these

equilibria and the far field equilibria; the rings and spot A are found by gluing these connections together. When

searching for solutions analytically, these equilibria and the corresponding connections are all that is usually

studied. The scaling is from the far field amplitude equations, a complex Ginzburg–Landau equation in 2D,

which require a
√
µ scaling.

Desert grass spots and rings from [25]

introduced by Gilad et al. (2004, 2007). The model extends
earlier models (Rietkerk et al., 2004) in capturing the non-local

nature of water uptake by plants’ roots, and the augmentation
of the root system in response to biomass growth. The model
has been used to study mechanisms of vegetation pattern
formation and ecosystem engineering along environmental
gradients, addressing in particular the question of resilience to
disturbances (Yizhaq et al., 2005; Gilad et al., 2007). An
extension of the model to plant communities, containing
several vegetation functional groups, has recently been used
to study transitions between competition and facilitation in
woody-herbaceous systems along stress gradients (Gilad et al.,
in press).

2. Experimental studies

To investigate whether ring formation is water dependent
we tested the influence of different water regimes on the
growth of P. bulbosa L. genets in laboratory conditions. We
hypothesized that non-uniform biomass distributions
should result from competition of individual ramets over
the limited water resource. Moreover, individuals in the
central part of a genet patch should experience stronger

competition than those at the circumference of the patch. As
a consequence a ‘‘latent ring’’, where the biomass density at

the patch core is smaller than the density at the periphery,
or a visible ring involving central die-back, is expected to
form.

2.1. Methods

At the beginning of the growing season (early winter)
individual P. bulbosa genets (10–15 cm diameter), completely
covered with green leaves, were transplanted into 4 L pots
(18 cm diameter) and to a greenhouse. Genets were collected
from a dry Mediterranean field site (Adulam, Israel 318160N
348250E) with an annual average rainfall of 400 mm yr!1, after
ca. 270 mm of precipitation. The pots were filled with
vermiculite, a homogeneous artificial horticultural substrate,
and distributed at random in a greenhouse for maximal
uniformity. To investigate whether pattern formation is water
dependent we uniformly irrigated the pots (after 2 weeks
acclimation period) once aweek for 13–14weeks (until the end
of the winter growth season), with water amounts equivalent
to 0, 100, 300 and 500 mm rainfall yr!1 (0, 126, 380 and 630 mL
per pot per week accordingly), 20 replications per water
treatment.

Fig. 1 – Ring patterns in nature. (a) Mixture of rings and spots of Poa bulbosa observed in the Northern Negev (250 mm yrS1).
(b) A ring of Asphodelus ramosus L. observed in the Negev desert (170 mm yrS1). (c) A ring of Urginea maritima (L.) Baker
ramets observed in Wadi Rum, Jordan (50 mm yrS1). Photographs by E. Meron (a) and H. Yizhaq (b and c).

e c o l o g i c a l c om p l e x i t y 4 ( 2 0 0 7 ) 1 9 2 – 2 0 0 193

Vegetation patches [Sheffer et al.]

Schematic for the rings and spots

To find spot B, I needed to proceed differently. A center manifold

reduction was used to reduce to the amplitude equations wherein

the solutions are combinations of Bessel functions. In the transition

regime, I used geometric blow-up techniques. Assuming the solu-

tion is of the form u = rα, then transforming into the coordinates

v := rur

u = α the algebraic growth or decay rate can be captured.

To prove spot B’s existence, the solutions had be tracked in each

coordinate chart and then combined using matched asymptotics. In

order to track the solutions adequately around each equilibrium in

the transition chart, normal forms were used. Then, by showing the

solution operators were contractions in appropriate function spaces,

the spot B solution was pieced together. Spot B’s transit between

the two equilibria conspires to produce the scaling µ
3
8 , which is

in very good agreement with the numerics. The same techniques

can be used to rigorously establish the existence of both spots A

and B in three dimensions. In the core, the solutions become sines

and cosines modulated by the radius, rather than Bessel functions.

Additionally, one of the equilibria in the transition chart loses hy-

perbolicity. The proofs still work, however. See [21] for details.

These techniques can be applied to study oscillons ([30] and [33])

in the forced complex Ginzburg-Landau equation, and a coupled

Turing-Hopf system. Kelly McQuighan and Bjorn Sandstede have

already began work on the forced Ginzburg-Landau system.

Stability: An unresolved aspect of the 1D Swift–Hohenberg equation is the stability of symmetric and asym-

metric pulses. The spectrum determines the linear stability of these pulses, and is the sum of the continuous

spectrum and point spectrum (isolated eigenvalues). The functions associated with the continuous spectrum are

not localized in space, unlike eigenvalues. The essential spectrum only depends on the asymptotic rest states and

is relatively straightforward to find. Once the spectrum is known, it is easy to assess stability. Any spectrum

with positive real part causes an instability. These can be related to solutions breathing, traveling, blowing up, or

decaying to zero. The symmetric pulses alternate between stability and instability at each fold in the bifurcation

diagram, and the dominate mode associated with the fold is localized at the edge of the snaking patterns. The
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numerically computed eigenvalues from [3] behave in a curious manner along the snaking curve: the saddle-node

eigenvalue appears to pass into the continuous spectrum. This is surprising because, in a similar situation, [12]

found this was impossible.

In 2D, both spots numerically appear to be stable under radially symmetric perturbations. As the planar

patterns become broad enough, the radial equation formally reduces to the 1D equation (as r → ∞) at the

edge of the pattern. The dominate unstable mode then approaches the localized unstable mode from 1D. Under

arbitrary perturbations however, spot A and B are both unstable. Spot A is known to undergo a symmetry

breaking bifurcation that forms hexagons [16], but the behavior of spot B is unknown. I am presently studying

the dynamics for these spots in both two and three dimensions.

The techniques I used to prove the existence of spots in 2D and 3D are also applicable to study the stability of

these solutions. I want to examine the spectrum of the linearization of the Swift–Hohenberg equation around

the spots. Using an appropriate ansatz, the eigenvalues can be found by solving the original equation with one

additional term. I can then use the same charts and matching procedure as was used to prove existence to find

the eigenvalues, though the analysis is much more involved.

Heavy-ion fusion-fission physics: Early in graduate school, I studied nuclear reaction theory under the

supervision of Dr. John Lestone at Los Alamos National Laboratory. In heavy-ion collisions, a large nucleus,

such as oxygen, is accelerated and collided with an enormous nucleus, such as uranium. The two nuclei fuse

into an extremely excited state. Energy is then dissipated through ejecting gamma rays, neutrons, and charged

particles, and eventually fissioning. It was believed that an energy dependent nuclear viscosity was required to

accurately predict the neutron emission and fission rates. This theory disagreed with direct measurements of the

nuclear viscosity, however. We were able to show that an energy dependent nuclear viscosity was unnecessary to

reproduce the data through an improved model and systematic Monte Carlo simulations. This resulted in two

publications [14, 20].

Future directions: Many pattern forming systems exhibit low-dimensionality in their

solutions, even though the models are infinite dimensional. As an example, the 1D

snaking solutions for the Swift–Hohenberg equation all differ by a single localized roll

that remains unchanged as one progresses up the bifurcation curve. In [9, 26, 31], a

Proper Orthogonal Decomposition (POD) has been performed on the solutions to several

PDEs in order to extract low-dimensional structures in the solutions. These modes

are then used to calculate the bifurcation curves, often with massive improvements in

computational cost but no loss in fidelity. Nathan Kutz has proposed studying the 2D

snaking curves using a POD, adding a mode after every fold. Hopefully we would be able

to extract information on why snaking terminates by examining the small changes in the

dominate modes as we travel up the bifurcation curve.

Three-dimensional Turing patterns have been experimentally found in chemical reactions;

see [2, 13]. They first used a PDE solver for a two component model equation to predict

the existence of 3D Turing spots, and then used tomograpy to image the corresponding

chemical reaction as it progressed. It would be interesting to apply the same methodology

used for the Swift–Hohenberg equation, which is the normal form for Turing bifurcations

in reaction-diffusion equations, to their model equations.

Ferrosoliton from [10]

Ferro-fluids [Richter]

Hexagons from [23]
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