Markov Partitions for Hyperbolic Automorphisms of Nilmanifolds: Computational and Algorithmic Considerations
Dr. Eric Fink (Montana State University)
11/15/2021 4:10pm
Abstract:
A celebrated result by Sinai (subsequently extended by Bowen) gives the existence
of a Markov partition and associated conjugate symbolic dynamical system for any Anosov
diffeomorphism on a compact manifold. Our recent work with Prof. Kwapisz provides
an explicit construction in the setting of nilmanifolds (conjecturally the most general
setting, up to a finite covering). Just as there is a philosophical gap between an
existence proof and an explicit construction, there is again a gap between an explicit
construction and a computationally tractable algorithm. In this talk, we will explore
how these gaps were filled (e.g., optimizing Thurston's Solitaire; Hopcroft's and
Brzozowski's Algorithms) by means of motivated (non-)examples, including irrational
base expansions of the real numbers and hyperbolic toral automorphisms.