Information

Instructor

Mark Pernarowski 

Textbook

Differential Equations (8th ed.) Nagle, Saff, Snider

Section

02

Office Hours

Schedule (Wil 2-236)

Phone

994-5356

Classroom

  • MF 11:00-11:50am  JAB 215
  • MF 11:00-11:50am  Herrick Hall 117
  • TR 11:00-11:50am   (ROBH 113)

JAB 215 is a great room.

 Final: Thursday, Dec 10 from 10:00-11:50 in ROBH 218

Grading, Syllabus, and Homework

Grading

The course % is determined by:

   Midterm 1      M1           100 
   Midterm 2      M2           100
   Final          F            100
  Quizzes        Q            100
  ________________________________
                               400

         % = (M1+M2+F+HW)/4
  • The final is not comprehensive. Six quizzes each worth 20 points will be given. Your best 5 quiz scores determine Q above.
  • Exam and quiz dates are indicated on the schedule below. Their content will be announced in class.
  • All exams and quizzes are closed book and no electronic devices are permitted. All exams including the Final will be given in class: Wil 1-144

Syllabus

Material covered in text is from:

  • Chapter 1 Introductory Definitions
  • Chapter 2 First Order ODE Methods
  • Chapter 3 First Order Models
  • Chapter 4 Second Order Linear ODE Methods
  • Chapter 6 Higher Order Differential Equations
  • Chapter 7 Laplace Transforms
  • Chapter 9 Linear Systems

Homework

  • Suggested homework is listed below.
  • Although the homework is not graded it is representative of the kinds of questions which will be on quizzes and exams.
  • Some additional problem sets and/or handouts will be handed out in class and/or posted on this site below.

Schedule

Below is a calendar showing the schedule of quizzes and tests (red) and  holidays (green).

Sunday
Monday
Tuesday
Wed
Thursday
Friday
Saturday
23

24
25
26
27
28
29
 
30
 
31
1
2

3
4
Quiz 1
5
 
6
 
7
Labor Day
8
9

10
11
12
 
13
 
14
15 
16

17
18
Quiz 2
19
 
20
 
21
22
23
 
24
25
Midterm 1
26
 
27
 
28
29
30

1
2
3
 
4
 
5
6
7

8
9
Quiz 3
10
 
11
 
12

13
14

15
16
17
 
18
 
19
20
21

22
23
Quiz 4
24
 
25
 
26
27
28
 
29
30
Midterm 2
31
 
1
 
2
3
4

5
6
7
 
8
 
9
10
11
Veteran's Day
12
13
Quiz 5
14
 
15
 
16
17
18
 
19
Last Drop Day
20
21
 
22
 
23
Quiz 6
24
25
Thanksgiving
26
Thanksgiving
27
Thanksgiving
28
29
30
1
2
 
3
4 Classes end
5
6
7
8
9
10 
Final 
ROBH 218
10:00-11:50am
11
12

Suggested Homework and Syllabus

1.1
1,2,5,7,9,11
 Dependent/independent variables, linear ODE
1.2
1a,2a,3,5,7,9,11,21,23,27,29a
 Solutions, Existence, Initial Value Problem
1.3
not covered
 Direction Fields
1.4
not covered
 Euler's Method
2.1
none
 Motion of a Falling Body
2.2
1,2,3,5,7,8,9,11,17,18,19,23
 1rst Order Separable
2.3
2,3,4,7,9,10,13,15,17,18,19,22
 1rst Order Linear
2.4
1,2, 5 (solve as well),11,12,13,22,25,26
 1rst Order Exact
2.5
not covered
 1rst Order Special Integrating Factors
2.6
5,7,9,11 (implicit),15,21,23,25
 1rst Order Homogeneous and Bernoulli only
3.1
none
 Mathematical Modelling
3.2
1,3,7
 Mixing models (only)
3.3
1,3,5
 Heating and Cooling Problems
3.4
1,5,24(hard)
 Newtonian Mechanics 
3.5
not covered
 Electrical Circuits
3.6
not covered
 Improved Euler Methods
3.7
not covered
 Higher Order Numerical Methods
 
Midterm 1
 
 
4.1
none
 Introductory 2nd Order Models
4.2
1,5,9,13,19,27,31,37(r=1 root), 39 (r=2), 43
 Homogeneous IVP, existence, Real Roots Case
4.3
1,3,5,9,11,13,19(r=1),21,25,29b (r=2),29c
 Homogenous, Complex Roots Case
4.4
9,11,13,15,17,23,25 (ugly),33
 Nonhomogeneous: Undetermined Coeff.
4.5
3,7,17,19,23,25,27,33 (trig ident for cos^3),35
 Nonhomogeneous: General solutions
4.6
1,3,5,7,11,13,17(longish)
 Variation of Parameters
4.7
9,11,13,15,17,19, Reduction of Order: 45,47
 Cauchy-Euler equations, Reduction of Order
4.8
not covered
 Qualitative theory
4.9
1,7,9,11
 Mechanical Vibrations
4.10
Not on exam
 Mechanical Vibrations: Forced
 
Midterm 2
 Chapter 4 on HW material assigned
 
 
5
Time permitting at end of course
 Phase Plane, Numerical
6
not covered
 General Theory of Linear Equations
 
 May be used on quizzes and final exam
7.2
3,5,9,11,13,15,17
 Laplace Transform Definition
7.3
1,3,5,7,9,13,25,31
 Laplace Transform Properties
7.4
1,3,7,9,21,23,25 (last 3 are nastier),33,35
 Laplace Transform Inverse
7.5
1,3,7(nasty),11 (set y(t)=w(t-2)),15,17,19,35
 Laplace Transform Initial Value Problems
7.6
not covered
 Laplace Transform Discontinuous Functions
7.7
1,2,3,5,7,9,13
 Laplace Transform Convolution Theorem
7.8
not covered
 Laplace Transform - delta function
7.9
not covered
 Laplace Transform - Systems of Equations
8
not covered
 Series Approximations and Solutions
9.1
1,3,5,8,11
 Differential Equations as Systems
9.2
none
 Gaussian Elimination
9.3
1,3,5,7b,7c,8,9,17,21,27,31,33,35,37,39
 Matrix algebra and Calculus
9.4
1,3,5,9,13,15,19, 28!!
 Linear Systems - Normal Form
9.5
1,3,5,7,11,19,21,31!!
 Linear Systems - Constant Coefficient (Real Case)
9.6
1, 3 (given lamba=1),5,13a
 Linear Systems - Constant Coefficient (Complex Case)
9.7
11,13,21a
 Linear Systems - Variation of Parameters
9.8
 Linear Systems - Repeated eigenvalues.
 
Final
 
 
 Review questions: Laplace Transforms  and Systems
 
 
 

Exam and Quiz Outlines

Quizzes

Quiz 1

1.1,1.2,2.2
 
 
 
 
 
 
Quiz 2

2.3,2.4,2.6
(you will be asked to solve an exact,
a linear, a homogenous and a Bernoulli eqn)
Quiz 3

4.2-4.3, 4.4
Will include general soln of higher order constant coefficient eqns and simple problems on undetermined coefficients (4.4). Will NOT include theory regarding independence, Wronskians, etc.
Quiz 4
                                             
4.6,4.7 and Reduction of Order
Cauchy-Euler homogeneous, Variation
of parameters, Reduction of Order
Quiz 5

7.2,7.3,7.4,7.5 (not 7.7)
Bring your Laplace transform table!! You will have to take transforms using tables and transform properties, inverst transforms and solve IVP. Partial fractions will be at most "cubic".
Quiz 6

Convolutions 7.7,9.4,9.5
Bring your Laplace transform table for the convolution question. The focus on 9.4-9.5 will
be: can you solve IVPs and can you find general
solutions for the distinct eigenvalue case?

Midterm 1

Sample Problems

 The exam will cover material from the following sections of the textbook:

  1. Section 1.1  ODE definitions and theory
  2. Section 1.2  IVP explicit/implicit solutions, existence uniqueness
  3. Section 2.2  Separable Equations
  4. Section 2.3  Linear Equations
  5. Section 2.4  Exact Equations
  6. Section 2.6  Homogeneous Equations and Bernoulli Equations only
  7. Section 3.2  Mixing Problems (no population problems)
  8. Section 3.4  Newtonian Mechanics - falling bodies, friction, rockets

Notes:

  • You will have to solve a separable, linear, exact, homogeneous and Bernoulli equation. This forms the bulk of the exam ( about 70%)
  • There will be one application problem, either a mixing problem or a rocket problem (15%)
  • One question will require you to categorize types of differential equations (15%).
  • The sample Problems are a good indication of the difficulty level of the problems.

Midterm 2

Sample Problems

The exam will cover material from the following sections of the textbook: 4.2-4.7, 4.9

  1. Constant Coefficient 2nd order homogeneous yh(t)
  2. Constant Coefficient 3rd order homogeneous yh(t) with one solution known
  3. Constant Coefficient 2nd order: Undetermined Coefficients Method for yp(t)
  4. General Solutions y(t)=yh(t) + yp(t), Initial Value Problems, Wronskian for independence
  5. Cauchy Euler 2nd Order homogeneous yh(t)
  6. Variation of Parameter Method for yp(t) - standard form.
  7. Reduction of order: homogeneous solution y1(t) from given homogeneous y1(t)
  8. Mechanical Vibrations: Amplitude Phase Form y= A sin(wt+phi) for unforced case

Notes:

  • There will be an amplitude-phase problem (10-15%). In fact, there will be a question from each point 1-8 above with the sole possible exception of 2.
  • The sample problems are a good indication of the difficulty level of the problems but this  sheet has only one amplitude-phase problem.
  • Undetermined coefficients is ONLY for L(y)=ay''+by'+cy=f and not L(y)=ax2y''+bxy'+cy=f

Final

Important: Thursday, Dec 10, 10:00-11:50am, ROBH 218

  1. Sections of the textbook covered: 7.2-7.5, 7.7, 9.4-9.7 and repeated eigenvalues notes
  2. Sample Problems: Laplace Transforms (Ch 7)  and Systems (Ch 9)
  3. Laplace Transform Table is allowed on the exam
  4. The exam will be about 50% on systems and about 50% on Laplace transforms

Topics Covered

  • Laplace: using definition to calculate F(s) for discontinuous functions
  • Laplace: Taking transforms using tables and properties
  • Laplace: Inversion via partial fractions and completing the square
  • Laplace: Solving Initial Value Problems
  • Laplace: Using convolution theorem to solve IVP and invert transforms
  • Systems: Matrix inverse (2x2) and basic matrix calculus: (AX)'=AX'+A'X
  • Systems: Independence, Wronskian, Fundamental Matrix X(t)
  • Systems: General Solution for homogeneous/nonhomogeneous systems
  • Systems: Solving Initial Value Problems using fundamental matrix X(t) 
  • Systems: Constant A (2x2): real distinct eigenvalues
  • Systems: Constant A (2x2): real repeated eigenvalues
  • Systems: Constant A (2x2): complex eigenvalue
  • Systems: Variation of Parameters

Updated on: 08/07/2015.